Syntheses and Characterizations of Alkyl- and Amidotin Porphyrin Complexes: Molecular Structure of *trans*-Bis(phenylacetylido)(*meso*-tetra-*p*-tolylporphyrinato)tin(IV)

Jinyuan Chen and L. Keith Woo*

Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111

Received January 22, 1998

Treatment of $(TTP)SnCl_2$ (TTP = meso-tetra-p-tolylporphyrinato dianion) with an excess of lithium amides $(\text{LiNHPh}, \text{LiNPh}_2, o-C_6H_4(\text{NHLi})_2)$ affords the metathesis products $(\text{TTP})\text{Sn}(\text{NHPh}_2)_2$ (1), $(\text{TTP})\text{Sn}(\text{NPh}_2)_2$ (2), and $(TTP)Sn(o-C_6H_4(NH)_2)$ (3). Ligand exchanges of 1 with p-toluidine and 2,3,5,6-tetrafluoroaniline afford the complexes $(TTP)Sn(p-NHC_6H_4Me)_2$ (4) and $(TTP)Sn(NHC_6F_4H)_2$ (5), respectively. Treatment of $(TTP)SnCl_2$ with the bulky lithium (2,4,6-tri-tert-butylphenyl)amide or with PhNLiNLiPh does not form the corresponding amido or azobenzene complexes but produces the reduced product (TTP)Sn. In addition, the reaction of (TTP)-Sn(NHPh)₂ with PhHN–NHPh results in the production of (TTP)Sn, azobenzene, and aniline. The diethyl complex $(TTP)SnEt_2$ (6) can be prepared via the reaction of $(TTP)SnCl_2$ with 1 equiv of ZnEt₂. The dineopentyl complex $(TTP)Sn(CH_2CMe_3)_2$ (7) can be detected in the reaction of $(TTP)SnCl_2$ with neopentyllithium. The methyl derivatives cis-(TTP)SnMe₂ (8) and (TTP)SnMeBr (9) can be obtained by the treatment of (TTP)Li₂(THF)₂ with 1 equiv of Me₂SnBr₂ at low temperature in toluene and CH₂Cl₂, respectively. Treatment of (TTP)SnCl₂ with an excess of alkynyllithium salts (LiC≡CPh, LiC≡CSiMe₃) affords the metathesis products (TTP)Sn(C≡CPh)₂ (10) and $(TTP)Sn(C \equiv CSiMe_3)_2$ (11). Complexes 10 and 11 are inert at ambient temperature and are not photosensitive. Complex 10 reacts stepwise with excess MeOH cleanly to convert to $(TTP)Sn(C \equiv CPh)(OMe)$ (12) and then to $(TTP)Sn(OMe)_2$ (13) with increasing reaction time. The lability of the axial ligands in these tin porphyrin complexes correlates inversely with the basicity of the axial group. The crystal structure of 10 (monoclinic, $P_{21/c}$, a =10.9424(2) Å, b = 14.5565(5) Å, c = 16.4968(6) Å, $\alpha = 90^{\circ}$, $\beta = 100.7930(10)^{\circ}$, $\gamma = 90^{\circ}$, $R_1 = 3.53\%$, and $wR_2 = 8.90\%$) was determined from X-ray diffraction data.

Introduction

In tin porphyrin chemistry, many derivatives of general formula $Sn(por)L_1L_2$ (por = general porphyrin dianion; L_1 , $L_2 = F$, Cl, OR, OH, N₃, etc.) have been synthesized and well characterized.¹⁻⁴ However, robust tin metalloporphyrin compounds containing one or two metal–carbon σ -bonded axial ligands are still rare. This is in contrast to the numerous main group metalloporphyrins of the types (por)M(R), (por)M(R)-(X), and (por)M(R₂) (R = alkyl, aryl; M = Al, Ga,^{5,6} Si⁷ Ge,⁸ etc.) that have been synthesized and described in the literature. Dialkyltin porphyrins were first reported by Cloutour et al. by using Grignard reagents as the alkyl ligand sources but could not be isolated due to their photoactivity and O₂ sensitivity.⁹

- (1) Rothemund, P.; Menotti, A. R. J. Am. Chem. Soc. 1948, 70, 1808.
- (2) Smith, G.; Arnold, D. P.; Kennard, C. H. L.; Mak, T. C. W. Polyhedron 1991, 10, 509.
- (3) Arnold, D. P.; Tiekink, E. R. T. Polyhedron 1995, 14, 1785.
- (4) Guilard, R.; Barbe, J.-M.; Boukhris, M.; Lecomte, C. J. Chem. Soc., Dalton Trans. **1988**, 1921.
- (5) Guilard, R.; Kadish, K. M. Chem. Rev. 1988, 88, 1121.
- (6) Guilard, R.; Lecomte, C.; Kadish, K. M. Struct. Bonding 1987, 64, 205.
- (7) Kadish, K. M.; Xu, Q. Y.; Barbe, J.-M.; Guilard, R. Inorg. Chem. 1988, 27, 1191.
- (8) Balch, A. L.; Cornman, C. R.; Olmstead, M. M. J. Am. Chem. Soc. 1990, 112, 2963 and references therein.
- (9) (a) Cloutour, C.; Lafargue, D.; Richards, J. A.; Pommier, J. C. J. Organomet. Chem. 1977, 137, 157. (b) Cloutour, C.; Lafargue, D.; Pommier, J. C. J. Organomet. Chem. 1978, 161, 327. (c) Cloutour, C.; Lafargue, D.; Pommier, J. C. J. Organomet. Chem. 1980, 190, 35.

bond were synthesized by Kadish et al. by oxidative addition of MeI to $Sn^{II}(por)$.¹⁰ The only other thermally robust but light sensitive dialkyltin porphyrin complexes of types *cis*- and *trans*-Sn(por)Ph₂ were reported in 1996.¹¹ The cis complex was prepared by transmetalating Li₂(por)(OEt₂) with SnPh₂Cl₂. The trans derivative was produced by the reaction of Sn(por)Cl₂ with Ph₂Mg. The only characterized amidotin porphyrin complex is bis(phenyltetrazolato)tin(IV) tetra-*p*-tolylporphyrinate.¹² To the best of our knowledge, no other alkyl- or amidotin porphyrins have been reported.

Tin porphyrins play an important role in antitumor drug action.¹³ Previous studies have shown that tin porphyrins could be used to inhibit bilirubin synthesis¹⁴ and to prevent jaundice, a common illness in neonates.¹⁵ It is anticipated that alkyltin porphyrins should also have similar biological activity. Synthesis of robust tin–carbon σ -bonded porphyrins and amidoporphyrins should be of interest in studying their biological relevance.

In this paper, the synthesis of several bis(amido)tin(IV) porphyrins and a series of tin(IV)–carbon σ -bonded porphyrins

- (10) Kadish, K. M.; Dubois, D.; Koeller, S.; Barbe, J.-M.; Guilard, R. Inorg. Chem. 1992, 31, 3292.
- (11) Dawson, D. Y.; Sangalang, J. C.; Arnold, J. J. Am. Chem. Soc. 1996, 118, 6082.
- (12) Jagerovic, N.; Barbe, J.-M.; Farnier, M.; Guilard, R. J. Chem. Soc., Dalton Trans. 1988, 2569.
- (13) Moreno, G., Pottier, R. H., Truscott, T. G., Eds. *Photosensitization*; Springer-Verlag: Berlin, 1988. See also references therein.
- (14) (a) Drummond, G. S.; Kappas, A. Science 1982, 217, 1250. (b) Delaney, J. K.; Mauzerall, D.; Drummond, G. S.; Kappas, A. Pediatrics 1988, 81, 498.
- (15) Munson, M.; Walsh, T. Prevention 1994, 46, 42.

is demonstrated. Their labilities correlate well with the basicity of the axial ligand anions. The X-ray molecular structure of $(TTP)Sn(CCPh)_2$ (TTP = *meso*-tetra-*p*-tolylporphyrinato dianion) is also reported here.

Experimental Section

General Method. The synthesis and handling of each porphyrin were performed under an inert atmosphere either in a glovebox or by Schlenk techniques, unless otherwise mentioned. THF, hexanes, pentane, OEt2, C6D6, and toluene were dried over purple solutions of Na/benzophenone, degassed with three "freeze-pump-thaw" cycles, and stored in the glovebox after being vacuum-transferred. CH2Cl2 was dried with P2O5, degassed and also stored in the glovebox after being vacuum-transferred. Literature procedures were used to synthesize (TTP)SnCl₂,¹ (TTP)Li₂(THF)₂,¹⁶ LiNPh₂,¹⁷ LiCH₂CMe₃,¹⁸ PhNLiN-LiPh (N,N'-dilithiohydrazobenzene),¹⁹ and LiNHPh.²⁰ Lithium phenylacetylide and o-C₆H₄(NHLi)₂ were synthesized by the reactions of phenylacetylene and o-diaminobenzene with n-butyllithium (1.6 M BuLi in hexane) in Et₂O. Lithium (2,4,6-tri-tert-butylphenyl)amide and LiC= CSi(CH₃)₃ were similarly prepared via the lithiation of 2,4,6-tri-tertbutylaniline and (CH₃)₃SiC≡CH with BuLi in hexanes, respectively. Other chemicals were reagent grade and were used without further purification.

Elemental analyses were performed in house on a Perkin-Elmer CHNS/O analyzer. ¹H NMR spectra were obtained at 300 MHz on a Varian VXR-300 spectrometer, and UV-visible spectra were obtained using a Hewlett-Packard HP 8452A diode-array spectrophotometer. X-ray crystallographic analysis was performed by Siemens, Madison, WI, and MS analysis was performed on a Finnigan TSQ 700 mass spectrometer.

Synthesis of trans-(TTP)Sn(NHPh)2 (1). To a stirred solution of (TTP)SnCl₂ (0.0708 g, 0.0825 mmol) in 15 mL toluene at -34 °C was added PhNHLi (0.0220 g, 0.222 mmol). The solution was warmed to ambient temperature and its color slowly changed from purple to dark green. The solution was stirred subsequently for 21 h and then filtered. The filtrate was concentrated to 1.5 mL and cooled to -34°C to deposit dark crystals. (TTP)Sn(NHPh)2 was isolated by filtration, washed with 2 mL of hexanes, and dried in vacuo (0.042 g, 52%). ¹H NMR (C₆D₆, ppm): 9.08 (s, 8H, β -H), 8.01 (d, 8H, $-C_6H_4$ Me), 7.27 (d, 8H, -C₆H₄Me), 5.87 (m, 6H, -NHPh), 2.40 (s, 12H, C₆H₄Me), 2.34 (m, 4H, -NHPh), -4.37 (s, 2H, -NHPh). UV-vis (toluene): 408, 429 (Soret), 565, 609 nm. Anal. Calcd for (TTP)Sn(NHPh)2. C₆H₅CH₃ [SnC₆₇H₅₆N₆]: C, 75.64; H, 5.31; N, 7.90. Found: C, 76.49; H, 5.40; N, 8.06. The toluene solvate was observed in the ¹H NMR spectrum (2.10 ppm, s, 3H) of the sample submitted for elemental analysis.

Synthesis of trans-(TTP)Sn(NPh2)2 (2). The preparation was similar to that of 1. To a stirred solution of (TTP)SnCl₂ (0.0749 g, 0.0873 mmol) in 20 mL of toluene at -34 °C was added LiNPh₂ (0.0430 g, 0.245 mmol). The solution was warmed to ambient temperature, stirred 17.5 h, and filtered. The green filtrate was concentrated to 1.5 mL and cooled to -34 °C to form microcrystals. The product (TTP)Sn(NPh₂)₂ was isolated via filtration, washed with 2 mL of hexanes, and dried in vacuo (0.0280 g, 26%). ¹H NMR (C₆D₆, ppm): 8.99 (s, 8H, β -H), 8.08 (d, 8H, $-C_6H_4Me$), 7.33 (d, 8H, $-C_6H_4$ -Me), 6.15 (t, 4H, p-H in NPh₂), 6.01 (t, 8H, m-H in NPh₂), 2.91 (d, 8H, o-H in NPh₂), 2.44 (s, 12H, -C₆H₄Me). UV-vis (toluene): 437 (Soret), 570, and 612 nm. Anal. Calcd for (TTP)Sn(NPh₂)₂•1.5hexane [SnC₈₁H₇₇N₆]: C, 77.63; H, 6.19; N, 6.71. Found: C, 78.56; H, 6.01; N, 6.80. The hexanes solvate (1.5 equiv) was observed in the ¹H NMR spectrum (1.25 ppm, m, 12H; 0.88 ppm, t, 9H) of the sample submitted for elemental analysis.

- (18) Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359.
- (19) Noeth, H.; Regnet, W. Adv. Chem. Ser. 1964, 42, 166.

was added solid o-C₆H₄(NHLi)₂ (0.0075 g, 0.063 mmol). The solution was warmed to ambient temperature and stirred for 17 h. By ¹H NMR spectroscopy, it was found that about 31% of (TTP)SnCl₂ was not reacted. Another 7.0 mg of C₆H₄(NHLi)₂ (0.058 mmol) was added to the solution. The mixture was stirred for additional 7 h and then filtered. The filtrate was concentrated to 1.5 mL and cooled to -34°C to deposit microcrystals. (TTP)Sn(o-C₆H₄(NH)₂) was isolated via filtration and dried in vacuo (0.0220 g, 47%). ¹H NMR (C₆D₆, ppm): 9.11 (s, 8H, β -H), 8.00 (br s, 4H, $-C_6H_4$ Me), 7.89 (br s, 4H, $-C_6H_4$ -Me), 7.24 (d, 8H, $-C_6H_4$ Me), 5.74 (m, 2H, C₆H₄(NH)₂), 4.94 (m, 2H, C₆H₄(NH)₂), 2.38 (s, 12H, C₆H₄Me), -1.38 (s, 2H, C₆H₄(NH)₂). UV– vis (toluene): 430 (Soret), 562, 606 nm. MS (NH₃/CI, negative): m/z893.9 (M⁻ 893.65).

Synthesis of (TTP)Sn(o-C₆H₄(NH)₂) (3). To a stirred solution of

(TTP)SnCl₂ (0.0448 g, 0.0522 mmol) in 15 mL of toluene at -34 °C

Reaction of (TTP)SnCl₂ with PhNLiNLiPh. To an NMR tube were added 0.0088 g of (TTP)SnCl₂ (0.010 mmol) and 0.0032 g of PhNLiNLiPh (0.016 mmol). About 0.8 mL of C₆D₆ was also added to the tube. The ¹H NMR spectrum was checked after 2 h. It was found that the reaction was complete and only (TTP)Sn and azobenzene (PhNNPh) were formed after the reaction. ¹H NMR of (TTP)Sn (C₆D₆, ppm): 9.19 (s, 8H, β -H), 8.02 (br, 8H, $-C_6H_4$ Me), 7.25 (d, 8H, $-C_6H_4$ Me), 2.40 (s, 12H, $-C_6H_4Me$), identical with the reported data.²¹ ¹H NMR of PhNNPh (C₆D₆): 8.01 (d, 4H), 7.0–7.18 (m, 6H), identical with the spectroscopy of an authentic sample.

Reaction of (TTP)SnCl₂ with Lithium 2,4,6-tri(*tert***-butyl)phenylamide. An NMR tube was charged with (TTP)SnCl₂ (0.0034 g, 0.004 mmol), lithium (2,4,6-tri-***tert***-butylphenyl)amide (0.0031 g, 0.012 mmol), and about 0.7 mL of C₆D₆. After 2 h, an ¹H NMR spectrum indicated that the only new product was Sn(TTP) (87% conversion). Approximately 5% of (TTP)SnCl₂ was unreacted.**

Reaction of (TTP)Sn(NHPh)₂ (1) with *p*-Toluidine. An NMR tube was charged with (TTP)Sn(NHPh)₂ (0.0052 g, 0.005 mmol), *p*-toluidine (0.0057 g, 0.05 mmol), and about 0.6 mL of C₆D₆. After 3.4 h, the only new product detected by ¹H NMR was (TTP)Sn(*p*-NHC₆H₄Me)₂ (4). The ratio of (TTP)Sn(NHC₆H₄Me)₂ to **1** was 7:1. This ratio did not change even when the reaction mixture was heated at 80 °C in an oil bath for about 6 h. PhNH₂ was also identified. ¹H NMR of (TTP)Sn(*p*-NHC₆H₄Me)₂ (4) (C₆D₆, ppm): 9.07 (s, 8H, β -H), 8.01 (d, 8H, $-C_6H_4$ Me), 7.29 (d, 8H, $-C_6H_4$ Me), 5.67 (d, 4H, $-NHC_6H_4$ Me), 2.40 (s, 12H, $-C_6H_4Me$), 2.34 (d, 4H, $-NHC_6H_4$ Me), 1.77 (s, 6H, $-NHC_6H_4Me$), -4.37 (s, 2H, $-NHC_6H_4$ Me).

Reaction of (TTP)Sn(NHPh)₂ (1) with 2,3,5,6-Tetrafluoroaniline. An NMR tube was charged with (TTP)Sn(NHPh)₂ (0.0052 g, 0.005 mmol), 2,3,5,6-tetrafluoroaniline (0.0073 g, 0.04 mmol), and about 0.6 mL of C₆D₆. The ¹H NMR spectrum indicated that reaction was complete within 11.5 h. The only porphyrin product was (TTP)Sn(NHC₆F₄H)₂ (5). PhNH₂ was also identified. Pure complex 5 can be isolated via the reaction of complex 1 with excess 2,3,5,6-tetrafluoroaniline in toluene and recrystallized from a minimum amount of toluene/hexanes at -25 °C. ¹H NMR of (TTP)Sn(NHC₆F₄H)₂ (5) (C₆D₆, ppm): 9.15 (s, 8H, β -H), 8.09 (d, 8H, $-C_6H_4$ Me), 7.28 (d, 8H, $-C_6H_4$ Me), 5.20 (m, 2H, $-NHC_6F_4H$), 2.40 (s, 12H, $-C_6H_4Me$), -4.43 (s, 2H, $-NHC_6F_4$ H). UV–vis (toluene): 429 (Soret), 568, 613 nm. MS (NH₃/CI, negative): *m/z* 1116.1 (M⁻ 1115.7).

Reaction of (TTP)Sn(NHPh)₂ (1) with 2,4,6-Tri-*tert*-butylaniline. An NMR tube was charged with complex 1 (0.0048 g, 0.005 mmol), about 0.6 mL of C_6D_6 and 2,4,6-tri-*tert*-butylaniline (0.0054 g, 0.021 mmol) at ambient temperature. No reaction of 1 with 2,4,6-tri-*tert*-butylaniline was observed via ¹H NMR after heating the reaction mixture in an oil bath (80 °C) for 23 h.

Reaction of (TTP)Sn(NHPh)₂ (1) with 2,4,6-Trimethylaniline. An NMR tube was charged with complex 1 (0.0028 g, 0.003 mmol), about 0.6 mL of C₆D₆, and 2,4,6-trimethylaniline (6.0 μ L, 0.04 mmol) at ambient temperature. After 24 h, no reaction was detected via ¹H NMR spectroscopy.

Reaction of (TTP)Sn(NHPh)₂ (1) with o-C₆H₄(NH₂)₂. In a glovebox, (TTP)Sn(NHPh)₂ (0.0022 g, 0.002 mmol), o-C₆H₄(NH₂)₂

⁽¹⁶⁾ Arnold, J. J. Chem. Soc., Chem. Commun. 1990, 976.

⁽¹⁷⁾ Gray, S. D.; Thorman, J. L.; Berreau, L. M.; Woo, L. K. Inorg. Chem. 1997, 36, 278.

⁽²⁰⁾ Berreau, L. M.; Young, V. G., Jr.; Woo, L. K. Inorg. Chem. 1995, 34, 527.

⁽²¹⁾ Barbe, J.-M.; Ratti, C.; Richard, P.; Lecomte, C.; Gerardin, R.; Guilard, R. *Inorg. Chem.* **1990**, *29*, 4126.

Reaction of (TTP)Sn(NHPh)₂ (1) with PhNH–NHPh. In a glovebox, (TTP)Sn(NHPh)₂ (0.0028 g, 0.003 mmol), PhNH–NHPh (1.3 mg, 0.007 mmol), and 0.7 mL of C_6D_6 were added to an NMR tube. After 2 h, the reaction was complete as monitored by ¹H NMR. New products observed were (TTP)Sn, NH₂Ph, and PhN=NPh. ¹H NMR peaks observed for (TTP)Sn (ppm): 9.18 (s, 8H, β -H), 8.03 (m, $-C_6H_4$ -Me, partially obscured by PhNNPH), 7.26 (d, 8H, $-C_6H_4$ Me), 2.40 (s, 12H, *CH*₃). ¹H NMR peaks observed for NH₂Ph (ppm): 7.06 (m, partially obscured), 6.71 (m, partially obscured), 6.36 (d, 4H, o- C_6H_5), 2.79 (br s, NH₂). ¹H peaks observed for and PhN=NPh (ppm): 8.00 (m, partially obscured), 7.14 (m, partially obscured), 7.12 (m, partially obscured).

Synthesis of trans-(TTP)SnEt₂ (6). The following procedure was performed primarily in the dark to avoid the photodecomposition of the product. Solutions were exposed to low-level light for short periods for visual examination. The dichloride complex (TTP)SnCl₂ (0.0761 g, 0.089 mmol) was dissolved in 20 mL of toluene, and the solution was cooled to -34 °C. To this cooled and stirred purple solution was added 9.1 μ L of ZnEt₂ (0.089 mmol). This solution was kept at -34°C in a freezer in the glovebox. After 15.5 h, the resulting green solution was filtered, and the filtrate was concentrated to 2 mL. The concentrate was layered with 5 mL of hexanes, and the mixture was cooled to -34 °C to form a precipitate. The product (TTP)SnEt₂ was isolated by filtration and dried in vacuo (0.025 g, 33%). ¹H NMR (C_6D_6, ppm) : 9.11 (s, 8H, β -H), 8.12 (d, 8H, $-C_6H_4Me$), 7.26 (d, 8H, $-C_6H_4Me$), 2.40 (s, 12H, $-C_6H_4Me$), -3.58 (t, 6H, $-CH_2CH_3$), -6.23 $(q, 4H, -CH_2CH_3)$. Further purification failed due to the decomposition of 6.

Synthesis of *trans*-(TTP)Sn(CH₂CMe₃)₂ (7). The procedure was also performed primarily in the dark like the preparation of **6**. To a stirred purple solution of (TTP)SnCl₂ (0.0096 g, 0.011 mmol) in about 5 mL of toluene at -34 °C was added a solution of LiCH₂CMe₃ (0.0018 g, 0.023 mmol) in 2 mL of toluene, which was also cooled to -34 °C. The resulting orange-brown solution was maintained at -34 °C in a freezer for 23.5 h. The solution was then dried, and the residue was analyzed by ¹H NMR. It was found that the major product corresponded to the target product (TTP)Sn(CH₂CMe₃)₂. Other products (possibly four porphyrin products) were not identified. ¹H NMR of **7** (C₆D₆, ppm): 9.12 (s, 8H, β -H), 8.22 (d, 8H, $-C_6H_4$ Me), 7.29 (d, 8H, $-C_6H_4$ Me), 2.40 (s, 12H, $-C_6H_4Me$), -2.22 (s, 18H, $-CH_2CMe_3$), -6.65 (s, 4H, $-CH_2$ CMe₃). Compound **7** was not isolated due to its decomposition.

Reaction of (TTP)SnCl₂ with LiMe. An NMR tube charged with (TTP)SnCl₂ (0.0087 g, 0.010 mmol) and 0.6 mL of C₆D₆ was cooled to less than 5 °C. A methyllithium solution (about 2 equiv, 1.4 M in Et₂O) was added to the NMR tube wrapped with aluminum foil. The solution was warmed to ambient temperature. After 3 h, ¹H NMR was checked to find that one of the major products corresponded to *trans*-(TTP)SnMe₂. ¹H NMR of *trans*-(TTP)SnMe₂ (C₆D₆, ppm): 9.11 (s, 8H, β -H), 8.09 (d, 8H, $-C_6H_4$ Me), 7.25 (d, 8H, $-C_6H_4$ Me), 2.40 (s, 12H, $-C_6H_4Me$), -6.46 (s, 6H, $-CH_3$). The other products (possibly two porphyrins) were not identified. The signal for *trans*-(TTP)SnMe₂ disappeared after several hours in the dark to form unidentified products.

Synthesis of *cis*-(TTP)SnMe₂ (8). This experiment was done in the dark. To a stirred solution of (TTP)Li₂(THF)₂ (0.0460 g, 0.0556 mmol) in 7 mL of toluene at -25 °C was added 1 mL of a toluene solution of SnMe₂Br₂ (0.0175 g, 0.0567 mmol) which had been cooled to -25 °C. The solution was maintained at -25 °C in a freezer for about 22.5 h. The solution was filtered, and the filtrate was taken to dryness under reduced pressure to give *cis*-(TTP)SnMe₂ (0.020 g, 44%). Further purification failed due to decomposition at ambient temperature. ¹H NMR (C₆D₆, ppm): 9.08 (s, 8H, β -H), 8.14 (br s, 4H, $-C_6H_4$ Me), 7.93 (br s, 4H, $-C_6H_4$ Me), 7.25 (br s, 8H, $-C_6H_4$ Me), 2.38 (s, 12H, $-C_6H_4Me$), -3.83 (s, 6H, $-CH_3$). MS (NH₃/CI, positive): m/z 817 (M⁺ 817.6). UV-vis (toluene): 432 (Soret), 628 nm.

Synthesis of trans-(TTP)SnMeBr (9). This procedure was similar to that for the preparation of 8. To a stirred solution of (TTP)Li₂(THF)₂ (0.0361 g, 0.0437 mmol) in 10 mL of CH_2Cl_2 at -34 °C was added a solution of $SnMe_2Br_2$ (0.0127 g, 0.0444 mmol) in 1 mL of CH_2Cl_2 which had also been cooled to -34 °C. The mixture was kept at -34°C for 23 h. After the solution was filtered at ambient temperature, the filtrate was concentrated to 1.5 mL and layered with 5 mL of Et₂O, and the mixture was cooled to -34 °C to deposit microcrystals. The product trans-(TTP)SnMeBr was isolated by filtration, washed with 1 mL of Et₂O, and dried in vacuo (0.0220 g, 57%). ¹H NMR (C₆D₆, ppm): 9.14 (s, 8H, β -H), 8.08 (d, 4H, $-C_6H_4$ Me), 7.87 (d, 4H, $-C_6H_4$ -Me), 7.25 (d, 4H, -C₆H₄Me), 7.20 (d, 4H, -C₆H₄Me), 2.38 (s, 12H, -C₆H₄Me), -5.68 (s, 3H, -Me). UV-vis (CH₂Cl₂): 431 (Soret), 565, 608 nm. MS (NH₃/CI, positive), m/z: 881.2, (M – H)⁺; 802.6 (M – $Br)^+$; 867.0 (M – Me)⁺ (M⁺ 882.5). The distribution of MS peaks was similar to the isotope pattern of 9 [SnC₄₉H₃₉BrN₄]. Anal. Calcd for (TTP)SnMeBr [SnC49H39N4Br]: C, 66.69; H, 4.45; N, 6.35. Found: C, 65.97; H, 4.06; N, 6.29.

Synthesis of *trans*-(TTP)Sn(C≡CPh)₂ (10). To a stirred solution of (TTP)SnCl₂ (0.0784 g, 0.0913 mmol) in 20 mL of toluene at -20 °C was added PhC=CLi (0.0341 g, 0.315 mmol). The resulting solution was warmed to ambient temperature, during which its color slowly changed from purple to green. After being stirred for 18 h, the solution was filtered, and the filtrate was dried in vacuo. The residue was redissolved in 3 mL of toluene, the solution was layered with 10 mL of pentane, and the mixture was cooled to -20 °C to deposit dark blue crystals. The product (TTP)Sn(C≡CPh)₂ was isolated via filtration, washed with 2 mL of hexanes, and dried in vacuo (0.040 g, 44%). ¹H NMR of **10** (C₆D₆, ppm): 9.21 (s, 8H, β -H), 8.02 (d, 8H, $-C_6H_4$ -Me), 7.23 (d, 8H, -C₆H₄Me), 6.14 (t, 2H, -C≡CPh), 6.01 (t, 4H, $-C \equiv CPh$), 5.38 (d, 4H, $-C \equiv CPh$), 2.38 (s, 12H, $-C_6H_4Me$). UVvis (toluene): 419, 441 (Soret), 585, 629 nm. Anal. Calcd for (TTP)-Sn(C=CPh)₂ [SnC₆₄H₄₆N₄]: C, 77.66; H, 4.68; N, 5.66. Found: C, 77.10; H, 4.98; N, 5.33.

Synthesis of *trans*-(TTP)Sn(C≡CSiMe₃)₂ (11). The procedure was similar to that for the preparation of 10. To a stirred solution of 67.6 mg of (TTP)SnCl₂ (0.0787 mmol) in about 15 mL of toluene at -25 °C was added 22.1 mg of LiC≡CSiMe₃ (0.221 mmol). The mixture was warmed to ambient temperature, during which its color slowly changed from purple to green. After 16 h, ¹H NMR spectroscopy was used to monitor the extent of reaction. As the reaction was found not to be complete, an additional 14.1 mg of LiC≡CSiMe₃ (0.135 mmol) was added to the mixture. After an additional 16 h, the mixture was filtered, and the green filtrate was concentrated to about 2 mL. The solution was then covered with 6 mL of hexanes, and the mixture was cooled to -25 °C. Complex 11 was isolated via filtration, washed with 2 mL of hexanes, and dried in vacuo (30 mg, 39%). ¹H NMR of **11** (C₆D₆, ppm): 9.16 (s, 8H, β -H), 8.05 (d, 8H, $-C_6H_4$ Me), 7.26 (d, 8H, -C₆H₄Me), 2.39 (s, 12H, -C₆H₄Me), -1.26 (s, 18H, -SiMe₃). UV-vis (toluene): 419, 441 (Soret), 585, 629 nm. Anal. Calcd for $(TTP)Sn(C \equiv CSiMe_3)_2 [SnC_{58}H_{54}N_4Si_2]: C, 70.94; H, 5.54; N, 5.71.$ Found: C, 70.90; H, 6.04; N, 5.65.

Synthesis of *trans*-(TTP)Sn(C=CPh)(OMe) (12). To a stirred solution of (TTP)Sn(C=CPh)₂ (0.0315 g, 0.0318 mmol) in 7 mL of C₆H₆ was added 86.4 μ L a of C₆H₆ solution of MeOH (0.0118 g in 1.0 mL of C₆H₆) (about 0.0318 mmol). After 3 h, the green solution was brought to dryness in vacuo, and the residue was redissolved in about 1 mL of C₆H₆. This solution was then mixed with about 8 mL of hexanes, and the mixture was cooled to $-25 \,^{\circ}$ C to deposit microcrystals. Complex **12** was isolated via filtration, washed with 1 mL of hexanes, and dried in vacuo (0.015 g, 51%). ¹H NMR of *trans*-(TTP)Sn(C=CPh)(OMe) (C₆D₆, ppm): 9.19 (s, 8H, β -H), 8.03 (d, 4H, $-C_6H_4$ Me), 7.95 (d, 4H, $-C_6H_4$ Me), 7.23 (m, 8H, $-C_6H_4$ Me), 6.14 (t, 1H, -C=CPh), 6.00 (t, 2H, -C=CPh), 5.41 (d, 2H, -C=CPh), 2.38 (s, 12H, $-C_6H_4$ Me), 7.153 (s, 3H, -OMe). UV-vis (toluene): 414, 435 (Soret), 573, 615 nm. MS (NH₃/CI, negative): m/z 919.7 (M⁻ 919.7).

Reaction of (TTP)Sn(C=**CPh)**₂ (10) with MeOH. In air at ambient temperature, 4.2 mg of (TTP)Sn(C=CPh)₂ (0.004 mmol) was added to a NMR tube and dissolved in about 0.7 mL of C₆D₆. Then 3.0 μ L

Table 1. Selected Crystallographic Data for the Structure Determination of $(TTP)Sn(C \equiv CPh)_2$

empirical formula	$C_{64}H_{46}N_4Sn$
temperature	293(2) K
crystal system	monoclinic
space group	$P2_{1}/c$
a	10.9424(2) (Å)
b	14.5565(5) (Å)
С	16.4968(6) (Å)
α	90°
β	100.7930(10)°
γ	90°
Ż	2
density	1.273 Mg/m ³
θ range for data collection	1.88-28.26°
goodness-of-fit on F^2	1.035
\tilde{f} inal R indices $[I > 2\sigma(I)]$	$R_1 = 0.0353$; w $R_2 = 0.0890$
<i>R</i> indices (all data)	$R_1 = 0.0584; wR_2 = 0.0996$

of MeOH was added to the solution. The reaction was monitored with ¹H NMR spectroscopy. It was found that, in 1 h, complex **10** was completely converted to trans-(TTP)Sn(C≡CPh)(OMe) (12). After 4.5 h, complex 12 disappeared, and the only porphyrin complex in the solution was (TTP)Sn(OMe)₂ (13). The ¹H NMR spectrum of trans-(TTP)Sn(C≡CPh)(OMe) in this solution with excess MeOH exhibited resonances at 9.20 (s, 8H, β -H), 8.14 (d, 4H, $-C_6H_4Me$), 8.04 (d, 4H, $-C_6H_4Me$), 7.27 (m, 8H, $-C_6H_4Me$), 6.14 (t, 1H, $-C \equiv CPh$), 5.99 (t, 2H, $-C \equiv CPh$), 5.40 (d, 2H, $-C \equiv CPh$), 2.39 (s, 12H, $-C_6H_4Me$), and -1.80 ppm (s, 3H, -OMe). Similarly, the ¹H NMR spectrum of (TTP)-Sn(OMe)2 in this solution (with excess MeOH) contained peaks at 9.20 (s, 8H, β -H), 8.11 (d, 8H, $-C_6H_4Me$), 7.28 (d, 8H, $-C_6H_4Me$), 2.40 (s, 12H, $-C_6H_4Me$), and -1.59 ppm (s, 6H, -OMe). ¹H NMR of isolated (TTP)Sn(OMe)₂ (C₆D₆, ppm): 9.17 (s, 8H, β-H), 7.95 (d, 8H, -C₆H₄Me), 7.23 (d, 8H, -C₆H₄Me), 2.38 (s, 12H, -C₆H₄Me), -1.38 (s, 6H, -OMe). ¹H NMR of (TTP)Sn(OMe)₂ (CDCl₃), ppm: 9.11 (s, 8H, β -H), 8.19 (d, 8H, $-C_6H_4$ Me), 7.60 (d, 8H, $-C_6H_4$ Me), 2.72 (s, 12H, $-C_6H_4Me$), -2.16 (s, 6H, -OMe). These values are identical to the reported ¹H NMR data.²²

X-ray Structure Determination of (TTP)Sn(C=CPh)₂ (10). A crystal suitable for X-ray structure analysis was grown in a toluene solution layered with hexanes at ambient temperature. A dark-blue needlelike crystal of (TTP)Sn(C=CPh)₂ of approximate dimensions of 0.60 mm × 0.15 mm × 0.15 mm was used for X-ray crystallographic analysis. Intensity data were measured at 293 °C on a standard Siemens SMART1000 CCD-based X-ray diffractometer system equipped with a Mo-target X-ray tube ($\lambda = 0.710$ 73 Å) operating at 2000 W. The detector was placed at a distance of 5.016 cm from the crystal.

A total of 1260 frames were collected with a scan width of 0.3° in ϕ and an exposure time of 30 s/frame. The frames were integrated with the Siemens SAINT software package using a narrow-frame integration algorithm. The integration of the data using a monoclinic unit cell yielded a total of 13 041 reflections to a maximum 2θ angle of 56.5° (0.75 Å resolution), of which 5454 were independent (redundancy 2.39, $R_{\rm int} = 2.95\%$, $R_{\rm sig} = 3.96\%$) and 4289 (78.6%) were greater than $4\sigma(F)$. The final cell constants are based upon the refinement of the (*x*, *y*, *z*) centroids of 8192 reflections above $2\sigma(I)$. Analysis of the data were corrected for absorption using the SADABS program with minimum and maximum transmission coefficients of 0.625 and 0.862, respectively.

The structure was solved and refined using the Siemens SHELXTL (version 5.1) software package. The final anisotropic full-matrix least-squares refinement on F^2 for data to $2\theta < 55^\circ$ converged at $R_1 = 3.53\%$ and $wR_2 = 8.90\%$. Selected crystallographic data for the crystal structure determination of **10** are shown in Table 1.

Results and Discussion

Synthesis and Characterization of Bis(amido)tin Porphyrins. Lithium amide reagents have been used to prepare early transition metal (Ti, Zr, etc.) amido complexes with porphyrin and other macrocyclic ligands.^{17,23} A similar strategy was used here to prepare bis(amido)tin porphyrins. When (TTP)SnCl₂ was treated with more than 2 equiv of LiNHPh and LiNPh₂ in toluene, respectively, bis(amido) complexes **1** and **2** were formed (eqs 1 and 2). These two compounds are readily identified as

$$(\text{TTP})\text{SnCl}_2 + 2\text{LiNHPh} \rightarrow (\text{TTP})\text{Sn}(\text{NHPh})_2 + 2\text{LiCl} \quad (1)$$
1

$$(TTP)SnCl_2 + 2LiNPh_2 \rightarrow (TTP)Sn(NPh_2)_2 + 2LiCl \quad (2)$$
2

the trans derivatives by ¹H NMR spectroscopy. The o- and m-protons of the meso-tolyl groups each appear as doublets, indicating that a mirror plane of symmetry is coincident with the porphyrin macrocycle. The aromatic proton resonances of the coordinated phenylamido group of **1** appear at 5.87 (6H, *m*-, *p*-H) and 2.34 ppm (4H, *o*-H), and the resonance of the NH proton appears at -4.37 ppm. These strong upfield shifts are a result of the shielding effect of the porphyrin ring. Similarly, the protons of the coordinated diphenylamido group of 2 also appear upfield as two triplets at 6.15 (p-H) and 6.01 ppm (m-H) and a doublet at 2.91 ppm (o-H). These upfield chemical shifts are diagnostic for axial ligands bound to the metalloporphyrin.¹⁷ The chemistry of tin is notably different from that of titanium. When (TTP)SnCl₂ was treated with 1 equiv of LiNPh₂, only bis(amido) complex 2 was detected. No mono-(amido) complex (TTP)Sn(NPh₂)Cl was observed. In contrast, (TTP)Ti(NPh₂)Cl could be isolated under the same conditions.¹⁷ Moreover, during the preparation of **1**, no imido complex was detected when more than 2 equiv of LiNHPh were used. Similar conditions for the Ti analogue only produced the imido complex (TTP)Ti=NPh.17 This indicates that tin is not capable of forming π -bonds with the axial ligand.

When the bulky lithium salt (lithium (2,4,6-tri-*tert*-butylphenyl)amide) was employed, no bis(amido) complex was formed. Only the reduced product (TTP)Sn was detected (reaction 3). Even at low temperature (-78 °C), the main

$$(TTP)SnCl_{2} + LiNHR \rightarrow (TTP)Sn \qquad (3)$$
$$R = 2,4,6-tri-tert-butylphenyl$$

product detected was (TTP)Sn. The bulkiness of the amido group appears to prevent nitrogen from binding to Sn as an axial ligand, thus promoting reduction of Sn(IV) to Sn(II). Note that the reducing ability of Li[*t*-BuNH] reportedly caused the formation of Ti(III) products during the treatment of TpTiCl₃ with Li[*t*-BuNH] (Tp = hydrotris(3,5-dimethylpyrazolyl)borato anion).²⁴

When o-C₆H₄(NHLi)₂ was used as the amido reagent, the o-phenylenebis(amide) complex **3** was formed (eq 4). The ligand-enforced cis coordination geometry is confirmed by ¹H

$$(TTP)SnCl_2 + o - C_6H_4(NHLi)_2 \rightarrow (TTP)Sn(o - C_6H_4(NH)_2) + 2LiCl (4)$$

NMR spectroscopy. The lack of mirror symmetry coincident with the porphyrin ring in 3 is shown by the nonequivalence of

⁽²²⁾ Tsai, C.-C.; Chen, Y.-J.; Chen, J.-H.; Hwang, L.-P. Polyhedron 1992, 11, 1647.

⁽²³⁾ Nikonov, G. I.; Blake, A. J.; Mountford, P. Inorg. Chem. 1997, 36, 1107.

⁽²⁴⁾ Dunn, S. C.; Mountford, P.; Shishkin, O. V. Inorg. Chem. 1996, 35, 1006.

the *ortho* protons of the *meso*-tolyl groups. These protons appear as two broad resonances at 8.00 and 7.89 ppm. The NH signal of the coordinated amides resonates at -1.38 ppm. This is downfield relative to the amide protons of **1** and indicates that the NH groups in **3** are further from the centroid of the porphyrin ring.²⁵ When PhNLiNLiPh was used, the corresponding azobenzene complex was not formed. Instead, only the reduced product (TTP)Sn and azobenzene were formed (eq 5). In addition, no reaction occurs between (TTP)Sn and PhN=

$$(TTP)SnCl_2 + PhNLiNLiPh \rightarrow (TTP)Sn + PhN=NPh + 2LiCl (5)$$

NPh in C_6D_6 at ambient temperature and at 80 °C. This indicates that (TTP)Sn(η^2 -PhNNPh) is not thermodynamically stable with respect to (TTP)Sn and PhN=NPh.

Ligand Exchange of 1 with Amines. The phenylamido complex (TTP)Sn(NHPh)₂ can react with other amines to form new bis(amido)tin porphyrins (eq 6). When (TTP)Sn(NHPh)₂

$$(\text{TTP})\text{Sn}(\text{NHPh})_2 + 2\text{NH}_2\text{R} \rightarrow (\text{TTP})\text{Sn}(\text{NHR})_2 + 2\text{NH}_2\text{Ph}$$
4, 5
(6)

4: R = p-methylphenyl

5: R = 2,3,5,6-tetrafluorophenyl

was treated with a 10-fold excess of *p*-toluidine, (TTP)Sn[NH-(*p*-C₆H₄Me)]₂ (**4**) formed, but the conversion was not complete even at elevated temperature (80 °C) as monitored by ¹H NMR spectroscopy. When 2,3,5,6-tetrafluoroaniline (NH₂(C₆F₄H)) was used, complex **1** was completely converted to (TTP)Sn-(NH(C₆F₄H))₂ (**5**) at ambient temperature. There was no reaction between **1** and 2,4,6-tri-*tert*-butylaniline, even at high temperature. There was also no reaction between **1** and 2,4,6trimethylaniline. The lability of the amido complexes correlates directly with the basicity of the axial ligands. The amide exchange in eq 6 is governed by simple acid/base chemistry. The most basic amide prefers to form the neutral amine.

Chelation can also be used to drive amide exchange. When $(TTP)Sn(NHPh)_2$, 1, is treated with $o-C_6H_4(NH_2)_2$ in C_6D_6 , conversion of 1 to $(TTP)Sn(o-C_6H_4(NH)_2)$, 3, is complete in 6 h. This process is conveniently monitored by ¹H NMR. The β -H signal for the starting bis(amide) **1** at 9.08 ppm is replaced by a new signal at 9.11 ppm corresponding to the β -H resonance for the new o-phenylenedamide complex 3. Diagnostic upfieldshifted resonances for the coordinated o-C₆H₄(NH)₂ ligand appear at 5.74 (m, 2H, o-H), 4.94 (m, 2H, m-H), and 1.38 ppm (s, 2H, NH). However, treatment of (TTP)Sn(NHPh)₂ with 2.4 equiv of PhNH-NHPh in C₆D₆ results in the production of (TTP)Sn^{II} and 2 equiv of aniline. The amount of azobenzene could not be quantified by ¹H NMR due to the overlap of its resonances with the porphyrin tolyl proton and aniline signals. This reaction is analogous to eq 5 and reflects the thermodynamic instability of a Sn(II) η^2 -azobenzene complex.

$$(\text{TTP})\text{Sn}(\text{NHPh})_2 + \text{PhHN}-\text{NHPh} \rightarrow$$

$$(TTP)Sn^{II} + PhN = NPh + H_2NPh$$
 (7)

Characterization of Tin Porphyrins with σ -Bonded Carbon–Tin Axial Ligands. Three different methods have been reported for the synthesis of σ -bonded metalloporphyrins. The

first involved a metathetical reaction of (por)MCl, (por)MCl₂, or (por)M(OH)₂ with a carbanion source.^{5,6,9,11,26} The second used oxidative addition of an alkyl or aryl halide to a low-valent metalloporphyrin complex. The third method employed a direct metalation of Li_2 (por) with an aryltin reagent, Ph_2SnCl_2 .¹¹ In this study, related routes were used to prepare alkyltin porphyrins. The diethyl complex (TTP)SnEt₂ (**6**) was synthesized and isolated via the reaction of (TTP)SnCl₂ with ZnEt₂ at low temperature, as shown in eq 8. Complex **6** slowly decomposes

$$(TTP)SnCl_2 + ZnEt_2 \rightarrow (TTP)SnEt_2 + ZnCl_2 \qquad (8)$$
6

to form unidentified products at ambient temperature. The neopentyl analogue, $(TTP)Sn(CH_2CMe_3)_2$ (7), was detected during the reaction of $(TTP)SnCl_2$ with the lithium salt LiCH₂-CMe₃ at low temperature (eq 9) and was not isolated cleanly

$$(TTP)SnCl_2 + 2LiCH_2CMe_3 \rightarrow (TTP)Sn(CH_2CMe_3)_2 + 2LiCl (9)$$
7

due to decomposition. The A₂B₂ splitting pattern for the tolyl protons in the ¹H NMR spectra for **6** and **7** indicates that they are trans-derivatives. The resonances of the methylene protons of the axial ligands in **6** and **7** occur at -6.24 and -6.65 ppm, respectively, indicating the close proximity of these protons to the porphyrin centroid. This is expected for an alkyl group σ -bonded to a main group metal of a metalloporphyrin, including the unstable (por)Sn(R)₂ (R = Et, Pr, *i*-Pr, Me₃SiCH₂, etc.).^{9,26}

The products produced from the reaction between (TTP)- $Li_2(THF)_2$ and 1 equiv of Me₂SnBr₂ are solvent dependent. In toluene, the product is *cis*-(TTP)SnMe₂ (8) (eq 10). This result

$$(TTP)Li_{2}(THF)_{2} + Me_{2}SnBr_{2} \xrightarrow{\text{toluene}} cis-(TTP)SnMe_{2} + 2LiBr + 2THF (10)$$

is analogous to the preparation of *cis*-(por)SnPh₂.¹¹ The nonequivalence of the *ortho* protons of the *meso* aryls on the ring in complex **8**, as shown by the two broad resonances at 8.14 and 7.93 ppm respectively, supports the cis geometry of the two axial methyl groups. Moreover, this geometry is supported by the proton resonance of the axial methyl ligands. The methyl protons appear at -3.83 ppm, which is further downfield than resonances of typical axial alkyl ligands (usually less than -5 ppm).^{5,6} In contrast, the transient intermediate *trans*-(TTP)SnMe₂ detected via the reaction of (TTP)SnCl₂ with LiMe exhibits the proton resonance of the methyl ligands at -6.46 ppm. Solid complex **8** shows detectable decomposition at ambient temperature in several hours, even in the dark.

When (TTP)Li₂(THF)₂ is treated with Me₂SnBr₂ in CH₂Cl₂, the new product *trans*-(TTP)Sn(CH₃)Br is formed (reaction 11).

$$(TTP)Li_2(THF)_2 + Me_2SnBr_2 \xrightarrow{CH_2Cl_2} (TTP)SnMeBr \quad (11)$$

The¹H NMR and UV-vis spectroscopy of complex **9** are quite similar to that of *trans*-(TTP)Sn(CH₃)I.¹⁰ The trans geometry is supported by the methyl proton ¹H NMR signal located at -5.68 ppm, which was upfield compared to that of **8**. Solid complex **9** also slowly decomposes at ambient temperature.

⁽²⁵⁾ Jenson, T. R.; Katz, J. J. In *The Porphyrins*; Dolphin, D., Ed.; Academic: New York, 1978; Vol. 4, Chapter 5.

⁽²⁶⁾ Cloutour, C.; Debaig-Valade, C.; Gacherieu, C.; Pommier, J.-C. J. Organomet. Chem. 1984, 269, 239.

The acetylide complexes $(TTP)Sn(C \equiv CPh)_2$ (10) and $(TTP)-Sn(C \equiv CSiMe_3)_2$ (11) were isolated via the reaction of $(TTP)-SnCl_2$ with the corresponding alkynyllithium salt (eq 12). The

$$(TTP)SnCl_2 + 2LiR \rightarrow (TTP)Sn(R)_2 + 2LiCl \quad (12)$$
10, 11

$$R = C \equiv CPh (10), C \equiv CS_1Me_3 (11)$$

alkynyl ligands are mutually trans, as indicated by the A_2B_2 splitting pattern for the tolyl groups in the NMR spectra. This trans coordination geometry was also established by the molecular structure of **10** (vide infra). The resonances of protons of the axial groups in **10** and **11** appear upfield due to the shielding effect of the porphyrin ring current. These two compounds are inert at ambient temperature and are not light sensitive. Even in air, the benzene solutions of **10** and **11** showed negligible decomposition in 3 days.

Reaction of (TTP)Sn($C \equiv CPh$)₂ (10) with MeOH. When treated with MeOH, complex 10 could be smoothly converted in a stepwise manner first to (TTP)Sn($C \equiv CPh$)(OMe) (12) and then subsequently to (TTP)Sn(OMe)₂ (13), as shown in eqs 13 and 14. The characterization of (TTP)Sn(OMe)₂ was reported previously.²²

$$(TTP)Sn(C \equiv CPh)_2 + MeOH \rightarrow 10$$

$$(TTP)Sn(C \equiv CPh)(OMe) + PhC \equiv CH (13)$$
12

$$(TTP)Sn(C \equiv CPh)(OMe) + MeOH \rightarrow 12$$

$$(TTP)Sn(OMe)_2 + PhC \equiv CH (14)$$
13

When the bis(amido) complex 1 (0.0025 g, 0.0026 mmol) was treated with a large excess of MeOH (0.0136 g, 0.42 mmol) in C_6D_6 in a NMR tube at ambient temperature, the color of solution immediately changed to purple and the ¹H NMR spectrum indicated that complex 1 was cleanly converted to (TTP)Sn(OMe)₂ (eq 15). In addition, when complex 10 (0.0052

$$(TTP)Sn(NHPh)_2 + 2MeOH \rightarrow 1$$

$$(TTP)Sn(OMe)_2 + 2PhNH_2 (1)$$

$$(\text{TTP})\text{Sn}(\text{OMe})_2 + 2\text{PhNH}_2 (15)$$
13

g, 0.0052 mmol) was treated with 2,3,5,6-tetrafluoroaniline (0.0036 g, 0.028 mmol) in C_6D_6 at ambient temperature, no reaction was detected after 23 h via ¹H NMR spectroscopy (reaction 16). The substitution chemistry described here reveals

$$(TTP)Sn(C \equiv CPh)_2 + 2,3,5,6-C_6F_4HNH_2 \rightarrow \text{no reaction}$$
10
(16)

that the ligand affinity for tin(IV) porphyrins increases in the order:

$$NR_1R_2 < C \equiv CPh, C \equiv CSiMe_3 < OMe$$

This trend correlates well with the decreased basicity of NH_2^- (or $NR_1R_2^-$) > $HC\equiv C^-$ (or $RC\equiv C^-$) > OR^{-27} The lability

Figure 1. Perspective view of complex 10 showing the selected atomnumbering scheme.

of complexes 6-8 at ambient temperature also seems to be related to the strong basicity of the axial alkyl ligands. Decreasing the basicity of the alkyl ligands seems to increase the inertness of the dialkyltin porphyrin complexes.

X-ray Crystal Structure of 10. In the crystal structure of **10**, each unit cell contains two molecules in the space group $P2_1/c$. The coordination geometry of $(TTP)Sn(C=CPh)_2$ is shown in Figure 1. This molecule has a pseudooctahedral structure with the two phenylacetylide groups at mutually trans position. The molecule is centrosymmetric, and the Sn and four N atoms are coplanar. Selected bond lengths and bond angles are listed in Table 2.

The two independent Sn-N bond distances of 10 are equal within experimental error at 2.115(2) and 2.119(2) Å, respectively. These distances are slightly greater than the Sn–N bonds in other tin(IV) porphyrin complexes $(Sn-N \text{ in } Sn(TPP)F_2)$ 2.056(7) and 2.071(6) Å. Sn-N in Sn(TPP)(NO₃)₂ 2.075(5) and 2.080(5) Å),^{2,3} but are smaller than those in *trans*-Sn(TPP)-Ph₂(CH₂Cl₂) (Sn-N (average) 2.134 Å).¹¹ The two Sn-C bond distances in **10** are identical at 2.167(2) Å and are slightly shorter than the Sn-C bond distances of 2.196(4) and 2.212(4) Å in $Sn(TPP)Ph_2(CH_2Cl_2)$.¹¹ The Sn-C distance in **10** is also comparable to the Sn-C distances in other tin complexes, such as $[Me_3Sn(NH_3)_2][N(SO_2Me)_2]$ (Sn-C 2.124(2)-2.117(2) Å),²⁸ [C₆H₅)₃SnC₆H₂(CF₃)₃] (Sn-C 2.145(8)-2.233(7) Å),²⁹ [(CH₃)₃-SnOC(CF₃)₂]₂C₆F₄ (Sn-C 2.097(19)-2.134(23) Å)³⁰ and (CH₃)₂-Sn[N(SO₂CH₃)₂]₂ (Sn-C 2.101(3)-2.108(3) Å),³⁰ although their coordination geometries are different. The Sn-C distance in 10 is also comparable to the sum of the covalent radii (2.177 Å) of Sn (1.405 Å) and C (0.772 Å).³¹ This indicates that the Sn-C bond in 10 is essentially a σ -bond. The acetylenic bond distance for C(25)-C(26) of 1.197(3) Å is consistent with a triple $C \equiv C$ bond and is comparable to the $C \equiv C$ bond distance

- (29) Vij, A.; Kirchmeier, R. L.; Willett, R. D.; Shreeve, J. M. Inorg. Chem. 1994, 33, 5456.
- (30) Blaschette, A.; Jones, P. G.; Koch, D.; Hamann, T.; Krahl, J. Z. Anorg. Allg. Chem. 1991, 601, 111.
- (31) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon: Oxford, U.K., 1984; p 431.

^{(27) (}a) Morrison, R. T.; Boyd, R. N. Organic Chemistry, 6th ed.; Prentice Hall, Inc.: Englewood Cliffs, NJ, 1992. (b) Maskill, H. *The Physical Basis of Organic Chemistry*; Oxford University Press: New York, 1985; p 166.

⁽²⁸⁾ Blaschette, A.; Hippel, I.; Krahl, J.; Wieland, E.; Jones, P. G. J. Organomet. Chem. 1992, 437, 279.

 Table 2.
 Selected Bond Lengths (Å) and Bond Angles (deg) in Complex 10

Sn(1)-N(2A)	2.115(2)	Sn(1) - N(2)	2.115(2)
Sn(1) - N(1)	2.119(2)	Sn(1)-N(1A)	2.119(2)
Sn(1)-C(25)	2.167(2)	Sn(1)-C(25)#1	2.167(2)
C(25)-C(26)	1.197(3)	C(26)-C(27A)	1.440(3)
N(2A) - Sn(1) - N(2)	180.0	N(2A) - Sn(1) - N(1)	89.96(7)
N(2)-Sn(1)-N(1)	90.04(7)	N(2A) - Sn(1) - N(1A)	90.04(7)
N(2)-Sn(1) - N(1A)	89.96(7)	N(1)-Sn(1) - N(1A)	180.0
N(2A) - Sn(1) - C(25) #1	88.66(8)	N(2)-Sn(1) - C(25)#1	91.34(8)
N(1)-Sn(1)-C(25)#1	87.45(8)	N(1A) -Sn(1)-C(25)#1	92.55(8)
N(2A) - Sn(1) - C(25)	91.34(8)	N(2)-Sn(1)-C(25)	88.66(8)
N(1)-Sn(1)-C(25)	92.55(8)	N(1A) - Sn(1) - C(25)	87.45(8)
C(25)-Sn(1) - C(25)#1	180.0	C(25)-C(26) -C(27A)	178.5(3)
C(26)-C(25)-Sn(1)	170.1(2)	C(28)-C(27A) -C(26)	123.6(6)
C(32A) -C(27A) -C(26)	118.3(5)		

of 1.187(7) Å in *trans*-[(NH₃)Ru(C=CPh)(Ph₂PCH₂CH₂PPh₂)₂]-PF₆.³² Very little, if any, π -bonding exists between the acetylide ligands and Sn metal center. The angles of C(25)-C(26)-C(27A) and C(26)-C(25)-Sn(1) are 170.1(2) and 178.5(3)°, respectively, indicative of a slight distortion around the tin coordination center.

Conclusion

In this work we have demonstrated that bis(amido)tin porphyrins, including (TTP)Sn(NHPh)₂, (TTP)Sn(NPh₂)₂, and (TTP)Sn(*o*-C₆H₄(NH)₂), and dialkyltin porphyrins, including (TTP)Sn(C=CPh)₂ and (TTP)Sn(C=CSiMe₃)₂, can be isolated via the reactions of (TTP)SnCl₂ with related lithium amide and

alkyllithium salts. This is a new route for the synthesis robust dialkyltin porphyrins. With the reaction of $(TTP)SnCl_2$ with ZnEt₂ and the reactions of Li₂(TTP)(THF)₂ with Me₂SnBr₂ in different solvents at low temperatures, labile (TTP)SnEt₂, *cis*-(TTP)SnMe₂, and *trans*-(TTP)SnMeBr could be synthesized. The X-ray structure of $(TTP)Sn(C=CPh)_2$ shows the trans coordination geometry of the complex. It is also found that the stability of these tin porphyrins is well related to the basicity of the axial group.

Acknowledgment. We are grateful for partial support of this work provided by the NSF, the donors of the Petroleum Research Fund, administered by the American Chemical Society, and The Camille and Henry Dreyfus Foundation. We also thank Joe Thorman for assistance with an NMR tube experiment.

IC980079X

⁽³²⁾ Touchard, D.; Haquette, P.; Guesmi, S.; Pichon, L. L.; Daridor, A.; Toupet, L.; Dixneuf, P. H. Organometallics 1997, 16, 3640.